
Japanese-Style Toon-Based Water Shader
Oscar Dadfar

School of Computer Science
Carnegie Mellon University
odadfar@andrew.cmu.edu

Joel Welling
Supercomputing Department
Carnegie Mellon University

welling@psc.edu

Figure 1. Representation of toon-based water shader inspired by the Japanese water artwork The Great Wave off Kanagawa
by artist Katsushika Hokusai. Wave components are independently calculated and superimposed onto the mesh in the vertex
shader. The position, normal, and heighmaps attributes are responsible for the shading of each fragment.

Abstract
Modeling water in computer graphics can be a computationally
expensive process in order to achieve the realistic motions of
water. Water shaders attempt to relieve this expense by run-
ning all vertex and fragment updates in parallel on the GPU
specialized for simple linear operations. This paper looks at a
Non-Photo-Realistic (NPR) representation of water inspired by
the famous Japanese water-art painting The Great Wave off
Kanagawa by Katsushika Hokusai and attempts to produce a
modular toon-based water shader based on the work. Such a
system requires vertex position updates based on interpolated
spline calculations on the CPU, laplacian height diffusion in
the vertex shader, as well as thresholding on position, curvature,
and heightmap information in the fragment shader.

1 Introduction
Simulating water effects in computer graphics is a dynamic
simulation that has to be able to separate, combine, and
take up any shape. Physically-accurate water effects requires
knowledge of fluid dynamics, and can be modeled with ge-
ometries such as meshes, nurbs, and more-expensively, par-
ticle systems.
In recent years, the rise of toon-shading-based graphics

inspired many researchers to represent many common BSDF
(Bidirectional Scattering Distribution Functions) such a skin,
cloth, and even water, in an artistic matter. Toon Shading
became a way for artists to create stylized representations
of 3D scenes that would mimic their 2D counterpart. Rather

than rendering skin as a smooth gradient of colors from
light to shadows, toon shaders would instead segment colors
into bright lights and hard shadows. These results replicated
older 2D animations back when artists filled in many scenes
with hard colors rather than soft lighting because gradients
were difficult to paint.

1.1 Objective
With toon-based water shading, artists attempt to simulate
the overall deformations and color scheme of water, while
injecting a bit of their artistic ideas into the shader to make
certain colors brighter or other motions more exaggerated.
Many of these artistic ideas are inspired by older animation
styles from Disney and Studio Ghibli movies, both of which
have been praised for their artistic direction. CGI artists
use these films as templates to create robust water shaders
that can be used in any 3D aspect such that when they are
rendered, the 3D shader becomes a 2D animation that looks
nearly identical to the original film.
One of the most inspirational works of water art not in

film has been The Great Wave off Kanagawa by Japanese
artist Katsushika Hokusai. Hokusai uses a toon-shading style
similar to other films previously discussed where he deforms
waves to exaggerate motion while using a color pallet of
hard solids to differentiate between the various levels of the
water depth and curvature. This paper attempts to analyze
the different features of The Great Wave off Kanagawa in a

CMU, May 2019, Pittsburgh, PA, USA Dadfar

Figure 2. The Great Wave off Kanagawa by Japanese artist
Katsushika Hokusai in the early 1830’s.

toon-shading context in an effort to create a new toon-shader
inspired by the iconic work of Japanese history.

2 Related Works
Researchers Yu. et al. pioneered the toon-water computer
animation field with their first publication on real-time car-
toon water animation in 2007 [3]. Their approach draws
inspiration from many Disney 2D classics in order to create
a 2D-based 3D representation of water. By segmenting water
into different components, they were able to individually
capture the physical properties of water jets, stream riffs,
and droplet.
As animation slowly started moving towards the GPU,

Park and Choi were able to write a GPU-executable water
shader that could account for reflections and refractions
based on the viewing incident angle [4]. Their model pro-
vides faster parallelized results from GPU computations, and
also calculates the Gaussian curvature of the triangulated
mesh in order to detect peaks and valleys in order to deter-
mine depth-based shading.

Researchers Chandra and Sivaswamy analyzed first through
fourth order derivatives in order to assist with peak and val-
ley detection [5]. Using 1D curvature analysis as the basis,
they located specific properties the function’s derivatives
must have in order to locate where the derivative of curva-
ture vanishes. Such mathematical tools are useful for identi-
fying peaks and valleys in smoother mesh instances where
the curvature change is very gradual.
Toon-based water shading also has applications in Non-

Photo-Realistic (NPR) video processing. Zhang and his team
used optical flow of pixels to determine water movements
of low/high variance [6]. With this information, their ap-
proach draws brush strokes through low variance flows on
an NPR background of a video sequence to make the motions
look like Chinese paintings. Such an application is useful for

Figure 3. vertex displacement using interpolated spline
bursts. At each timestep, the vertex shader uses laplacian
diffusion to spread out the wave while also updating the
height of nearby vertices.

conditional-based water-shaders that rely on an input image
sequence to drive the NPR graphics.

3 Methods
The objective was to develop a modular web-based water
shader algorithm that took advantage of the GPU for accel-
erated computation while also being easily portable over
to other applications. The Three.JS JavaScript library was
chosen because of its fast compilation and execution using
WebGL and for easy viewing over multiple web browsers
[2].

3.1 Single Wave Component
Using a triangulated mesh grid, the system injects displace-
ments into the mesh at specific vertex locations. The Lapla-
cian from vertex neighbors is calculated in the vertex shader
to smooth out vertex positions at each time-step.

△h(x,y) = 2(
dh

dx
+
dh

dy
) − 4

dh

dt

The Laplacian △h(x,y) is computed using the two spatial
derivatives and the temporal derivative. For our case of us-
ing a discrete mesh, we use finite differentiation to capture
the spatial component of the Laplacian below.

Lts (x,y) =
1
4
(ht

[x+1,y] + h
t
[x ,y+1] + h

t
[x−1,y] + h

t
[x ,y−1])

In the discrete spatial Laplacian equation above, ht
[x ,y] repre-

sents the height of the vertex at location [x,y] at time t . The
spatial Laplacian can then be used in the 2D Scalar Wave
equation to update the height diffusion after each timestep
[1].

ht+1
[x ,y] = c1 ∗ (2Lts (x,y) − ht−1) + c2 ∗ h

t
[x ,y]

The constants c1 and c2 are used to regulate sampling be-
tween the current and previous height timesteps. These val-
ues should be bounded by c1 +c2 ≤ 1.0 to prevent the height

Japanese-Style Toon-Based Water Shader CMU, May 2019, Pittsburgh, PA, USA

field from diverging. There is an evident tradeoff in sampling
between these two values, as too large a sampling from the
previous height timesteps (c1) causes the waves to propa-
gate out of control and diverge, while too large a sampling
from the current height timesteps (c2) makes height diffusing
too slow. The implementation presented in this paper uses
c1 = 0.3 and c2 = 0.65. These values were intentionally con-
figured to sum to less than 1.0 so that the wave components
can diffuse down to a height of 0 over time.

The sudden rise in height in localized regions of the mesh
that create each wave component is a result of calculating
a burst location (wave center) for each component. Spline
curves were used to interpolate burst locations in the mesh.
Each spline is defined by 4 control points, and a duration
parameter d defining how long it takes to traverse the path.
At each time, the burst interpolated position is calculated as
a function of its normalized time t̂ .

t̂ =
t (mod d)

d

This produces a burst target (xt ,yt) that is then passed into
the vertex shader. The shader uses Euclidian distance from
each vertex point (u,v) to the burst target before calculating
the cosine of the distance to create a 3D cosine-wave distri-
bution over the mesh.

ht (®u) = cos(clamp(| |®i ∗ [®u − ®xt]| |2, 0, π) + 1.0)

In the above equation, ®u is the vertex point, ®xt is the burst
location, and ®i is the influence vector that weights each com-
ponent differently. As an example, for longer waves across
the x-axis, ®i can have a larger x-component relative to its
y-component. The L2 norm of the resulting vector is taken
and clamped between 0 and π before generating a 3D cosine
wave component.

The fragment shader thresholds over the height of each
fragment in order to determine one of 4 colors to use (white
foam, light blue, mid blue, dark blue). In the provided code,
these heights are set as [5.0, 3.0, 1.0, 0.0], though these are
subject to change for different average wave heights.
To provide a more robust means of foam formation on

each wave component, the normal at each component is
considered in the fragment shading process. For regions with
large normals components in the z-direction (flat regions)
above a certain height threshold, these regions are where the
derivative of the wave change sign, indicating high curvature.
Areas with large normal z-components are then also shaded
a white foam color.

3.2 System of Wave Components
Combining multiple wave components in order to produce a
system of waves requires duplicating the number of streams
responsible for producing offset bursts in the mesh. For

Figure 4. compositing multiple singular waves into one
scene, superimposing overlapping wave. Multiple wave lo-
cations are calculated from multiple spline locations before
being passed into the GPU.

greater modularity, the user is able to define a guide spline
that can be used in computing a system of N splines. For each
spline, some gaussian noise is added to each parameter to
disrupt the uniform spread of splines and encourage overlap
of wave components in the overall system. At each time t, N
burst locations are computed and sent to the vertex shader
to process.
For each vertex, the cosine of its Euclidean distance is

computed and accumulated against all burst locations. This
allows burst locations in the same region to superimpose as
with real water.

ht (®u) =
N∑
n=1

cos(clamp(pn ∗ ||®i ∗ [®u − ®xtn]| |2, 0, π) + 1.0)

The pn coefficient defines the peak height of each wave.
Higher waves will have a larger height and radius over the

Figure 5. wave composed from thresholding on the z-
component of the heightmap responsible for holding tempo-
ral information on wave component height properties.

CMU, May 2019, Pittsburgh, PA, USA Dadfar

mesh. Each stream is randomly assigned a peak value during
declaration, and the GPU saves the list of peak values associ-
ated with each burst location when calculating the updated
height values of each vertex.

3.3 Rift Water Components
To achieve the trailing effect of the water component, the
system needs to record previous height information for each
fragment. The current heightmap in the vertex shader is con-
figured as a 3-vector, but only uses the first two components
to store the previous and current height used in calculating
Laplacian diffusion. The third value in the vector can be used
to store temporal information indicating how long ago a
burst location passed through the current fragment.

min(ht (®u)) =minn∈N (| | ®u − ®xtn | |2)

Wheremin(ht (®u)) stores the min distance at each vertex po-
sition to the nearest burst location. On each update in the
vertex shader, if the vertex coordinate is within some thresh-
old distance d of any burst location, then it is given a rift
value r̄ inversely proportional to its distance from the near-
est burst location that is stored in the z-component of the
heightmap. This ensures that more depletion information is
stored near the peak of wave components.

rt = rt−1 + k ∗ (d −min(ht (®u))) if (min(ht (®u)) < d)

Where rt is defined in terms of rt−1 so that rift values can
accumulate over time. To prevent rift values from going
to infinity, at each timestep, the vertex shader divides any
current rt by some value (1.0 + ϵ) so that over time, rt will
deplete to 0. The result is a rift of white foam that trails
behind thewater component as it moves. This same effect can
also be applied to other colors by using different thresholds
on rt
Rift values are also modular in that they accumulate in

the presence of multiple nearby bursts. This is supported by
the idea that two waves superimposed will produce a larger
wave, which as a direct result will have a larger trailing rift.
As such, the rift values in the vertex shader are accumulated
if there are multiple non-zero values computed in order to
produce a longer-lasting rift at that instance.

4 Results
The following results in Figures 6-8 were run in Three.JS
in the Chrome browser. Performance hit 60 FPS using an
2.3GHz Intel i5 processor and 1536 MB Intel Iris Plus Graph-
ics for 100 wave components.

5 Discussion
Given extra time, the shader could be improved to more-
closely parallel different effects in the original Great Wave

Figure 6. smooth wave composition with integrated boat
dynamics.

off Kanagawa painting while also increasing performance
across different devices.

5.1 Shader Capabilities
Compared to the original Great Wave off Kanagawa painting,
the demonstrated model fails to capture any sense of line
drifts present to the sides of the waves. Some proposed ideas
to integrate this feature included constructing a texture map
of lines that could be passed in to the fragment shader to
be sampled at a skewed angle relative to the normal and
height of the fragment (fragments with lower heights would
sample from an even more skewed direction). This approach
was not robust since turns in the wave would segment the
skewed sampling, causing non-continuous line segments
shaded onto the wave.
Solving the texture problem also led to another problem

that the line thicknesses were constant along the wave, while
in the original painting, the line segments decreased in thick-
ness until they vanished. A proposed method for resolving
this was to use the height of each fragment to determine
how close together samples in the texture would be drawn.
Larger heights would correspond to closer samples being
drawn, leading to an increase in line thickness, but also an
increase in average line distance, which then becomes a new
problem. An attempted resolve to this was to have multiple

Figure 7. side view of multiple rift wave components.

Japanese-Style Toon-Based Water Shader CMU, May 2019, Pittsburgh, PA, USA

Figure 8. top view of rift water group.

textures with different line thicknesses, but then interpolat-
ing continuously between different thicknesses would prove
to be very difficult.
The biggest issue with sampling drifts from a texture is

that the drifts do not move. No information is carried from
the shaders about the velocities of each burst, so the texture
sampler has no way of adjusting for speedups or direction
changes in wave components. A future area of research may
be in how to pass this information down, and how to config-
ure the texture sampler to use this information on creating
consistent samples that track to the movements of each wave
component.

5.2 Performance
While significant performance was achieved using the specs
listed above, other devices such as a 2.6GHz Intel i7 pro-
cessor with Intel Skylake GT2 graphics achieve an average
performance of 58 fps, dipping below the 60 fps threshold.
Some of the more expensive computations occur on both
the CPU and GPU side when working with a large number
of wave components. For each vertex in the vertex shader,
the distance between it and every other burst is computed
in linear time relative to the number of wave components
attempting to be rasterized. The reference images were pro-
duced using 100 wave components, yet the performance can
dip drastically when increasing the number of components
by orders of magnitude for very large scenes. An alterna-
tive speedup would be to use pre-processing on the CPU to
construct a bonding-box hierarchy with amortized logarith-
mic construction and search relative to the number of wave
components.
Another expensive computation lies in the CPU when

retrieving the burst locations to pass into the shaders. Com-
puting all location is linear in time, but can be sped up using

multithreading since each burst location can be retrieved
independently.

6 Conclusion
We presented a novel Japanese-inspired water shading al-
gorithm that is dynamic relative to itself and other objects
on the water. This shader has potential applications in NPR-
style video game, animations, and anything else with a toon-
shading art direction. While there were some limitations in
implementing certain details from the original painting, the
overall water shader is computationally simple enough to
display in realtime, and able to be ported into any graphics
or animation software.

References
[1] 2008. 2D Water. (2008).
[2] 2019. Three-JS GPU Water. (2019).
[3] Haiying Chen-Cheng Yao Jinhui Yu, Xinan Jiang. 2007. Real-Time

Cartoon Water Animation. Computer Animation Virtual Worlds (2007),
405–414.

[4] Byungkuk Choi-Junyong Noh Mi You, Jinho Park. 2009. Cartoon Ani-
mation Style Rendering of Water. ISVC (2009), 67–78.

[5] Jayanthi Sivaswamy Siva Chandra. 2006. An Analysis of Curvature
Based Ridge and Valley Detection. IEEE (2006), 737–740.

[6] Yi-Fei Zhang Shi-Min Hu Ralph R. Martin Song-Hai Zhang, Tao Chen.
[n. d.]. Video-Based Running Water Animation in Chinese Painting
Style. ([n. d.]).

	Abstract
	1 Introduction
	1.1 Objective

	2 Related Works
	3 Methods
	3.1 Single Wave Component
	3.2 System of Wave Components
	3.3 Rift Water Components

	4 Results
	5 Discussion
	5.1 Shader Capabilities
	5.2 Performance

	6 Conclusion
	References

